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Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach.
The force density acting on the charged boundary layer is derived in detail. From Stokes’ equation with no-slip
boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic trans-
port coefficients. The results are discussed in view of previous work and available experimental data.
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I. INTRODUCTION

A thermally driven flow, or Ludwig-Soret effect, is ob-
served when applying a temperature gradient to gaseous or
liquid phases �1–6�. The corresponding mass transport is rel-
evant for natural and technological processes, such as the
global circulation of sea water �7� and the phase behavior of
eutectic systems at solidification �8�. In recent years, detailed
experimental studies on macromolecular solutions and col-
loidal suspensions have revealed unambiguous and often sur-
prising dependencies of the Soret effect on system param-
eters such as salinity, surface coating, solute concentration,
and molecular weight �9–21�. Although the analogy to elec-
trophoresis indicates the relevance of surface forces and sug-
gests a hydrodynamic treatment �22,23�, the physical mecha-
nisms that drive thermophoresis in liquids are poorly
understood and differ from those in gaseous phases �5,6�.

Applying a generalized force such as an electric field or a
thermal gradient to complex fluids results in a flow of heat,
charge, particles. For sufficiently weak forces, such a non-
equilibrium system is described in terms of linear force-
current relations �1�. If the number density n and the tem-
perature T are the relevant variables, the particle current in a
dilute colloidal suspension reads

J = − D � n − nDT � T . �1�

The first term on the right-hand side corresponds to Fick’s
law with the Einstein diffusion coefficient D, whereas the
second one describes the thermally induced flow, with the
thermal diffusion coefficient DT. Equation �1� is completed
by the expression for the heat current JQ=−��T−�n�n,
with the thermal conductivity � and the reduced Dufour co-
efficient �n; the cross-coefficients �n and DT are related by
the Onsager reciprocal rules �1�. The present work is con-
cerned with the thermophoretic coefficient DT of a charged
colloidal suspension.

For a closed system the stationary state is characterized
by J=0; according to Eq. �1� a thermal gradient imposes an
inhomogeneous density. Experimentally, DT is determined by
applying a temperature gradient to a uniform suspension
��n=0� and by recording the initial current J=−nDT�T, or
by measuring the density modulation �n=−n�DT /D��T in-
duced by a temperature inhomogeneity �T in the steady state
J=0 �4�. The latter method gives the Soret coefficient ST
=DT /D.

Equation �1� provides a macroscopic description for the
particle current �1�. In order to obtain a relation between the
kinetic coefficient DT and the properties of solute and sol-
vent, we split the particle current in two terms,

J = nu − � � � . �2�

The first one accounts for the phoretic velocity u due to the
interactions at the solute-solvent interface; this is a single-
particle effect, i.e., it is independent of the density n and
proportional to the thermal gradient,

u = − C � T . �3�

The main purpose of this paper is to work out the propor-
tionality factor C, similar to the coefficients obtained for an
electric field or a chemical gradient �23�. The second term of
J arises from the gradient of the osmotic pressure �, with the
mobility �=1 / �6�a�� depending on the solvent viscosity �
and on the particle size a. The stationary state J=0 provides
the equilibrium condition where all forces acting on a given
particle cancel. Inserting the single-particle velocity u=
−C�T and the osmotic pressure of a dilute suspension
�=nkBT in Eq. �2�, and comparing this expression to Eq.
�1�, we find the Einstein relation D=�kBT and the thermod-
iffusion coefficient

DT = �kB + C . �4�

For the Soret coefficient one has

ST =
1

T
�1 +

C

�kB
� . �5�

In the absence of particle-solvent interactions one has C=0
and ST=1 /T. This simply means that, at constant pressure,
the stationary density is inversely proportional to the nonuni-
form temperature and that the particles accumulate in colder
regions; this behavior is expected in the absence of solute-
solvent interaction, where the suspended particles may be
viewed as an ideal gas. Yet most colloidal suspensions show
a considerably stronger, positive or negative, Soret effect,
i.e., the interaction driven current −nC�T by far exceeds the
ideal-gas term −n�kB�T and may be directed toward colder
or warmer regions. These deviations express the failure of
the ideal-gas picture for the solute and emphasize the impor-
tance of particle-solvent interactions.

The properties of aqueous colloidal suspensions are
largely dominated by charge effects. Besides the surface
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charge density, the most important control parameters are the
particle radius a and the Debye length �. Recent measure-
ments on suspensions of micelles and polystyrene nanopar-
ticles �14,20,21,24,25� reported the laws ST	a�2 or 	a2�,
depending on the experimental conditions and parameters.
So far there is no generally accepted picture for the physical
mechanisms at work; theoretical approaches based on either
the free energy of the charged double layer or a hydrody-
namic treatment give diverging results �20–22,26–31�.

The present work deals with weakly charged particles, in
the usual framework of driven transport in colloidal suspen-
sions �23�. Section II gives a detailed derivation of the force
density induced by the thermal gradient in the vicinity of a
charged surface. In Sec. III we set up the hydrodynamic de-
scription and obtain the fluid and particle velocities; Sec. IV
gives the thermodiffusion coefficient DT. In Sec. V we com-
pare our results with previous work and experimental data,
and discuss the importance of the hydrodynamic boundary
conditions.

II. THERMALLY INDUCED FORCE

The hydrodynamic treatment given in the following sec-
tions relies essentially on the force fdV exerted by the sur-
face charge of the particle on a volume element dV of the
surrounding fluid. The force density f is finite only within a
boundary layer of thickness �. Throughout this paper we
suppose that � is much smaller than the particle radius a,

� � a . �6�

Thus the hydrodynamic quanitites vary rapidly in the normal
direction, and much more slowly along the interface. Here
we evaluate the electric force density f that arises from a
thermal gradient.

A. Electrostatics in the boundary layer

We consider a spherical particle of charge Q and radius a.
It is convienent to define the charge density 
=Q / �4�a2�.
The surface charge modifies the properties of the fluid in the
boundary layer in several respects. First, it results in an elec-
tric field E=−��; the resulting stress is accounted for in
terms of the Maxwell tensor

Tij = ��EiEj −
1

2
E2�ij� .

Second, the electrostatic potential � is screened through
the accumulation of mobile counterions in the electrolyte. In
mean-field approximation, the excess densities of �monova-
lent� positive and negative ions are given by

n = n0�e�e�/kBT − 1� ,

where n0 is the salinity. As a result the fluid in the boundary
layer carries a charge density

� = e�n+ − n−�

and an excess density of mobile ions

n = n+ + n−.

Accordingly, the force f�r�dV acting on a volume element dV
of the fluid comprises two terms,

f = � · T − ��nkBT� , �7�

where the divergence of the Maxwell tensor � ·T arises from
the electric field, and the entropic force −��nkBT� from the
nonuniform osmotic pressure. The former term may be re-
written by using the definition of the displacement vector
D=�E, its relation to the charge density �=� ·D, and the
fact that the curl of the electric field E=−�� vanishes, �
�E=0. Thus one finds the well-known force density acting
on a charged dielectric body �32,33�,

� · T = �E −
1

2
E2 � � , �8�

where �E describes the action of the electric field, and the
remainder accounts for the dielectrophoretic force due to the
spatial variation of the permittivity �32�. The additional con-
tribution to Eq. �7� arises from the osmotic pressure of the
mobile ions, i.e., from the fact that a charged fluid is a con-
ductor.

B. Debye-Hückel approximation

The present work is restricted to the case of weak surface
charges, where the potential energy of a mobile ion is smaller
than the thermal energy,

e� � kBT . �9�

Moreover, Eq. �6� implies that the Debye screening length

� =� �kBT

2n0e2

is much smaller than the particle size.
Under the assumption �9� the ion densities n may be

expanded to quadratic order in the small parameter e� /kBT.
Then the charge density is linear in the potential, �=
−�� /�2, and the electric force in Eq. �7� becomes

�E =
��

�2 � � =
�

2�2 � �2.

With the definition of the Debye length, the leading term of
the excess pressure reads as nkBT= ���2 /2�2�, and its gradi-
ent may be rewritten as

��nkBT� =
�

2�2 � �2 −
��2

2�2

�T

T
.

Inserting these terms in Eq. �7� we get

f = −
1

2
E2 � � +

��2

2�2

�T

T
. �10�

So far we have not used the precise form of the electrostatic
potential. The force f solely depends on the gradients of the
permittivity � and the nonuniform temperature T�r�.
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Since this work is confined to the case of a thin boundary
layer, ��a, we use the screened electrostatic potential of a
flat surface

� = �0e−z/�, �0 =
�


�
. �11�

Taking the derivative with respect to the normal coordinate
gives the electric field E=� /�. The charge density of the
fluid reads �=−�
 /��e−z/�; one readily verifies �dz�=−
,
i.e., the overall charge of the double layer is zero.

Comparison with the surface potential of a spherical par-
ticle Q / �4���1+a /��a�=�0 / �1+� /a� reveals that the finite
curvature would result in corrections of the order � /a. Since
we rely on Eq. �6� throughout this paper, these corrections
are of no significance.

C. Uniform temperature

We briefly address the force balance in a uniform system
where the permittivity and the temperature are constants
�T=0. Clearly, Eq. �10� states that the total force vanishes,
f=0; yet each of the terms in Eq. �7� contains a finite con-
tribution that is independent of �T. From the potential �11�
one finds the force on the charged fluid,

�Ez = − ��z� ,

and the gradient of the entropic pressure,

kBT�zn = ��/�2���z� .

With the above expression for the charge density these terms
cancel each other. This just means that for �T=0 there is no
net force and that the fluid is immobile.

D. Thermal force

Now we consider the effect of a small but finite tempera-
ture gradient. Since the permittivity gradient in Eq. �10�
arises from the nonuniform temperature, ��= �d� /dT��T,
both contributions to the thermal force are already propor-
tional to �T. In view of the linear current-force relation �1�,
terms of higher order in �T are irrelevant. Thus we calculate
the coefficients in Eq. �10� from the unperturbed potential
�11�. In particular, this leads to the electric field E=� /�;
with the logarithmic derivative of the permittivity

� = −
d ln �

d ln T

we obtain the final form for the force field,

f =
��2

2�2 �1 + ��
�T

T
. �12�

E. Temperature gradient

Due to the different heat conductivities of particle and
solvent, the temperature field close to the particle surface
differs from the externally applied uniform modulation �34�.
In the Introduction, e.g., in Eq. �3�, �T refers to the exter-

nally applied thermal gradient, i.e., to its value far from the
particle, which we denote

A = 	�T	�

in the remainder of this paper. On the other hand, Eq. �12�
involves the gradient close to the particle surface. Since heat
propagation is much faster than particle migration, the tem-
perature field may be taken as stationary. The heat conduc-
tion equation for a spherical particle is readily solved, and
the tangential component of the thermal gradient at the par-
ticle surface reads �35�

�xT = − ��t · A� = �A sin � . �13�

As shown in Fig. 1, � denotes the angle between the sur-
face normal n and the applied gradient A. According to the
usual definition of polar coordinates, the tangent vector t
coincides with the negative x axis. The parameter �
=3�S / �2�S+�P� is determined by the ratio of the heat con-
ductivities of solvent and particle. As to the normal compo-
nent, one finds

�zT = �n�n · A� = �nA cos �

with a modified prefactor �n=3�P / �2�S+�P�.
The unperturbed temperature gradient reads in local coor-

dinates Ax=A sin � and Az=A cos �. Thus the changes at the
surface of a colloidal particle are expressed by the factors �
and �n. For the case where the heat conductivities of solute
and solvent are identical, �S=�P, we have �=1=�n, i.e., the
thermal gradient is constant everywhere, �T=A.

III. HYDRODYNAMICS

The particle velocity u has to be derived from a fluid-
mechanical treatment �23�. The thermally driven motion of
micron or nanometer sized particles in a viscous liquid in-
volves small Reynolds numbers, i.e., inertia effects are neg-
ligible. Then the stationary velocity is given by Stokes’ equa-
tion �35�,

��2v = �P − f , �14�

where � is the solvent viscosity, P is the hydrostatic pres-
sure, and f is the force density exerted by the particle on the
fluid. An incompressible fluid satisfies � ·v=0, and in gen-

 

θ  
A  

n  
z  

x  

t  

FIG. 1. Schematic view of a spherical particle of radius a in a
temperature gradient A=�T. The surface charge density 
 is
screened by a diffuse layer of thickness ��a. At the surface the
local coordinates x ,z and the normal and tangent vectors n , t are
indicated.
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eral stick boundary conditions are supposed to apply at the
particle surface,

	v	r=a = u . �15�

The characteristic length scales of the normal and parallel
derivatives in Eq. �14� are given by � and a. The condition of
a thin boundary layer, as expressed in Eq. �6�, thus implies
that the forces vary rapidly in the normal direction, and much
more slowly along the interface. The resulting separation of
length scales permits us to calculate the particle velocity in
two steps. First, resorting to a one-dimensional �1D� approxi-
mation that is valid at distances much shorter than the par-
ticle size, we derive the boundary velocity induced by the
thermal force. In a second step we match this solution with
that of the force-free Stokes equation at distances well be-
yond �, and thus obtain the fluid velocity field.

In the laboratory frame the particle moves at speed u and
the fluid velocity vanishes at infinity. For the sake of com-
putational simplicity, we transform to the reference frame in
which the particle is at rest. Indicating the corresponding
velocities by a hat, we have û=0 and

v̂�r� = v�r� − u .

For the fluid motion in the boundary layer, local coordinates
x and z turn out to be most convenient, whereas the velocity
field at larger distances is best described in terms of polar
coordinates r and � with the origin at the particle center; see
Fig. 1.

A. Boundary layer

We rewrite Eq. �14� in terms of the normal and parallel
coordinates z and x,

��2v̂i = �iP − f i,

with �x=� /�x, etc., and where v̂ is the relative fluid velocity
with respect to the particle surface. The normal component
vanishes close to the interface, v̂z=0, which implies �zP
− fz=0 �23�. Since the force f is finite within the boundary
layer only, the hydrostatic pressure is constant at larger dis-
tances. Integrating �zP= fz we have

P = P0 − 

z

�

dz�fz�z�� , �16�

where P0 is a constant. The upper bound of the integral is
much larger than the thickness of the boundary layer but
much smaller than the particle size, and thus satisfies

� � � � a .

Regarding the tangential velocity v̂x, its derivative along
the surface is much smaller than the normal component, re-
sulting in the inequality �x

2v̂x��z
2v̂x. Discarding �x

2v̂x accord-
ingly, the equation for the tangential velocity component be-
comes

��z
2v̂x = �xP − fx. �17�

The derivative on the right-hand side gives the lateral force
per unit volume exerted on the fluid. Integrating this relation

once gives the shear stress 
xz=��zv̂x. This quantity does not
have a rigorous reference value, i.e., it takes finite values
both at the particle surface and beyond the boundary layer.
Yet in the boundary layer approximation, i.e., by assuming
an infinite flat surface, 
xz is zero well beyond the boundary
layer. Taking 
xz���=0 as reference value, the shear stress is
given by its variation from � to a distance z from the sur-
face,


xz�z� = 

z

�

dz��fx − �xP� . �18�

Integrating once more gives the velocity of the fluid with
respect to the particle,

v̂x�z� =
1

�



0

z

dz�
xz�z�� . �19�

Here we have used stick boundary conditions, i.e., v̂x�z� is
zero at z=0.

B. Boundary velocity

Replacing the upper bound of the integral with z→�, the
quantity vx��� gives the relative velocity of the fluid beyond
the boundary layer with respect to the particle surface. In-
serting the nonuniform pressure P one finds

vB =
1

�



0

�

dz

z

�

dz�� fx +
�

�x



z�

�

dz�fz�z��� . �20�

On a mesoscopic level the relevant length scale is given by
the particle size a; because of ��a, one may consider the
limit � /a→0 and take vB as the fluid velocity at the inter-
face.

This velocity depends on both components of the force
density fx and fz. We show that for the electric force studied
here, the latter contribution is negligible, i.e., the tangential
derivative �xP of the pressure is small as compared to fx.
Indeed, if the thermal conductivities of solvent and particle
are not very different, the normal and parallel temperature
gradients �xT and �zT components are of the same order of
magnitude, and so are the force components fx and fz. Since
the force is finite within the boundary layer only, the second
term in parentheses in Eq. �20� is approximately �x��fz�; this
has to be compared with fx. From Eq. �12� it is clear that
�x��fz� comprises terms proportional either to the square of
the thermal gradient 	��xT���zT� or to the second derivative
	�x�zT. �The curvature of the temperature field vanishes in
the bulk fluid, but is finite in the boundary layer.� The qua-
dratic terms arise from the factors � ,� ,� ,T present in �fz;
they are not significant in view of the linear current-force
relation �1�. As to the second derivative, the above discussion
of the thermal gradient implies that �x�zT varies on the scale
of the particle size, �x�zT��1 /a��zT. Thus we find that the
second term in parentheses in Eq. �20� is at most of the order

�x��fz� � ��/a�fz � fx.

As a consequence of this “boundary layer approximation”
�23�, we discard the integral term and we have
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vB =
1

�



0

�

dz

z

�

dz�fx.

Inserting the tangential component fx in Eq. �20� and noting
that only the electrostatic potential � depends on the integra-
tion variable, we obtain a double integral of �2. With the
above expression for � this integral is readily performed;
putting e−�/�→0 one finds



0

�

dz

z

�

dz��2 =
�2�0

2

4
,

and thus the boundary velocity

vB =
��0

2

8�T
�1 + ���xT .

The parallel component of the temperature gradient depends
on the orientation of the surface with respect to A. Separat-
ing the resulting sine function, we have

vB = v0 sin � ,

with the constant

v0 =
��0

2

8�
�1 + ��

�A

T
. �21�

For later use we give the vector quantity in the basis related
to polar coordinates,

vB = − v0 sin �t , �22�

where the minus arises since the tangent vector t points
along the negative x axis.

C. Three-dimensional flow

The electric force and the boundary velocity have been
evaluated in terms of a one-dimensional approximation to
Stokes’ equation that ceases at distances beyond �. In this
range one has to deal with the 3D Stokes equation, albeit
with modified boundary conditions. In a mesoscopic descrip-
tion, we may put � /a→0 and consider vB as the fluid ve-
locity at the interface. Thus Eq. �14� reduces to the force-free
Stokes equation

��2v = �P . �23�

Treating the fluid as incompressible imposes continuity of
the normal component of the velocity,

	n · �v − u�	a+� = 0. �24�

A second condition is obtained by noting that there is no net
external force acting on the system consisting of the particle
and the charged fluid. Thus the integrated normal force out-
side the boundary layer vanishes �23�,

�
a+�

dS� · n = 0, �25�

where the stress tensor

� = �� − P

comprises the dissipative term or viscous force density 
ij�
=���iv j +� jvi�, and the hydrostatic pressure P �35�. The third
condition involves the velocity �22�, which accounts for the
force acting on the double layer,

	t · �v − u�	a+� = t · vB. �26�

We transform to the reference frame in which the particle is
at rest, with û=0 and v̂�r�=v�r�−u. The solution of Stokes’
equation at small Reynolds numbers in spherical coordinates
v̂= v̂rn+ v̂�t reads �35�

v̂r = − u cos ��1 − 2�
a

r
+ 2�

a3

r3 � , �27a�

v̂� = u sin ��1 − �
a

r
− �

a3

r3 � , �27b�

where � is the polar angle with respect to the x axis and the
radial and tangential unit vectors n=r /r and t=�n /��. This
flow field is related to a nonuniform hydrostatic pressure

P�r� = P0 + �
2�ua

r2 cos � .

The parameters u ,� ,� are determined from the solution of
Stokes with the boundary conditions �24�–�26�.

The first two of these conditions involve the fluid velocity
and stress only. In the particle-fixed frame the normal veloc-
ity vanishes, 	v̂r	r=a=0, resulting in 1−2�+2�=0. The total
stress at the interface can be written as � ·n=n
rr+ t
r�,
with the entries of the dissipative part in spherical coordi-
nates �35�


rr� = 2�
� v̂r

�r
, 
r�� = �� � v̂�

�r
−

v̂�

r
� . �28�

Integrating Eq. �25� over a sphere just outside the boundary
layer gives the relation 1−5�+2�=0. One readily obtains
the amplitudes of the velocity field varying with distance as
1 /r and 1 /r3, respectively,

� = 0, � = −
1

2
. �29�

Taking the back transformation v�r�= v̂�r�+u yields the fluid
velocity in the laboratory frame,

v�r� = u
a3

r3 �1

2
sin �t + cos �n� . �30�

Finally we determine the particle velocity u. With Eq. �22�
and �→0, the remaining condition �26� reads

− v0 sin � = 	v̂�	a+�.

Inserting v̂� we have u=− 2
3v0 and, with the expression for v0,

u = − �
��0

2

12�T
�1 + ��A . �31�

The maximum value of the boundary velocity vB occurs at
�= �

2 and exceeds the particle velocity, i.e., the particle and
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the fluid beyond the boundary layer move in opposite direc-
tions.

D. Boundary layer approximation

The expression �20� relies on two assumptions: slow
variation of the tangential velocity in the boundary layer,
�x

2v̂x��z
2v̂x, and a small shear stress beyond a distance �.

Here we justify these assumptions by evaluating the quanti-
ties from the 3D solution, and we summarize the variation of
the velocity field and the shear stress from the particle sur-
face to distances well beyond the boundary layer.

The parallel derivative of the velocity in the boundary
layer �xv̂x matches �1 /a���v̂�; according to Eq. �30� it is of
the order v� /a. Comparing to the normal derivative in the
boundary layer �zv̂x� v̂x /�, one readily verifies �xv̂x��zv̂x,
i.e., that the latter provides the dominant contribution in
terms of the small parameter � /a; the same argument applies
to the second derivative.

In Eq. �18� we have used that for a flat surface, the shear
stress vanishes beyond the boundary layer. From Eqs. �27�
and �28� one obtains

	
r�	a+� = −
2

a
�vB,

the shear stress is proportional to the inverse curvature radius
of the particle. The variation of the shear stress through the
boundary layer is given by putting z=0 in Eq. �18�,


xz�0� =
2

�
�vB.

One readily finds that 	
r�	a+� is by a factor � /a smaller than
the term retained in Eq. �18�. These relations confirm the
validity of the boundary layer approximation in the case
��a.

In Fig. 2 we plot schematically the variation of both the
velocity field and the shear stress. In view of Eq. �31� we put
u�0, i.e., the particle moves in the direction opposite to the
thermal gradient. The left panel shows the function v��r� at
�= �

2 , i.e., in the plane normal to the applied thermal gradient
where the radial component is zero and where the relative
velocity reads vB=− 3

2u. At the particle surface the fluid ve-

locity takes the value 	v�	a=u, increases through the bound-
ary layer, and attains 	v�	a+�=− 1

2u. At larger distances, the
velocity vanishes with the characteristic power law v�=
− 1

2u�a /r�3. The shear stress is shown in the right panel. Its
maximum and minimum values occur at the particle surface
and beyond the boundary layer, respectively, and they differ
by a factor � /a. At larger distances the shear stress vanishes
as 
r�� �1 /r4.

IV. PHORETIC COEFFICIENTS

Equation �31� gives the phoretic velocity of the suspended
particle in terms of the applied thermal gradient and thus
defines the proportionality factor in Eq. �3�

C = ��1 + ��
��0

2

12�T
. �32�

The transport coefficient DT is obtained from Eq. �4�, with
the mobility �=1 / �6��a� and the ratio of heat capacities
�=3�S / �2�S+�P�,

DT =
kB

6��a
+

�S

2�S + �P
�1 + ��

��0
2

4�T
. �33�

The first term depends on the particle size a; for sufficiently
large solutes it is negligible, and DT is independent of the
particle size. For a polymer coil, a has to be replaced by the
gyration radius R.

Most experiments study the stationary density modulation
�n /n=−�DT /D��T induced by the temperature inhomogene-
ity �T, and thus measure the Soret coefficient ST=DT /D
rather than the transport coefficient DT. With D
=kBT / �6��a� one has

ST =
1

T
�1 + ��1 + ��

�a��0
2

2kBT
� . �34�

The first term in brackets gives the ideal-gas expression ST
=1 /T; the remaining one is proportional to the particle size
a. For solutes larger than a few nanometers, phoretic motion
due to surface forces in general exceeds the diffusive term,
i.e., the coefficient C is larger than �kB. In this limit the
above quantities vary with the square of the Debye length.
The Soret coefficient reads

ST 	 �2a , �35�

whereas DT	�2 and u	�2 are independent of the particle
size.

V. DISCUSSION

A. Approximations

Our results follow from a hydrodynamic treatment of the
fluid surrounding a charged particle. In view of the discrep-
ancies with recent work discussed below, it seems worth-
while to review the underlying assumptions.

�i� The surface charge density 
 is supposed to be con-
stant, resulting in a surface potential �0 that depends only
weakly on temperature through the permittivity and the

1 2 Radius r/a 1 2Radius r/a 

Velocity v θ Shear stress σ r θ

u

0

-
2

1 u

2η vB/ λ

- 4η vB/a

FIG. 2. Schematic plot of the tangential velocity v� and the
shear stress 
r� for �= �

2 and a�r�2a. The vertical dashed line
indicates the thickness of the boundary layer, i.e., the Debye length
�. The minimum and maximum values of v� and 
r� are indicated.
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screening length. For most experimental systems, the charge

 arises from ionic surfactants grafted on a particle or
trapped at a liquid interface. If the degree of dissociation of
this surfactant varied with T, the value of the surface charge

 and thus the potential �0 would show an additional tem-
perature dependence.

�ii� The present work relies on the validity of the Debye-
Hückel approximation, i.e., on sufficiently small surface
charges. Yet for several systems the measured values of ST
indicate effective valencies Z close to the value Z�

= �4a2 /�B��1+� /a� where the weak-coupling assumption
ceases to be valid �36�.

�iii� Both the hydrodynamic treatment and the electrostat-
ics are restricted to the leading order in powers of the param-
eter � /a. For micron-size particles this ratio is of the order of
a few percent �20,21� yet approaches unity for micelles and
water-in-oil droplets of a few nanometers �14,24,25�.

�iv� In Eq. �23� we have supposed that the charge distri-
bution in the double layer is not affected by the thermal
gradient, i.e., we have neglected polarization effects; prelimi-
nary work �37� indicates that polarization corrections are of
the order of � /a and thus may safely be neglected for large
particles.

B. Hydrodynamic boundary conditions

Comparison with the discussion of the charged double
layer at the end of �31� reveals that Eq. �34� differs by a
factor � /a. This discrepancy arises from the boundary con-
ditions for the velocity field at the solid-fluid interface. The
present work is based on the no-slip boundary conditions
�15�, i.e., both tangential and normal components of the ve-
locity are continuous, and in particular v̂x�z=0�=0 in Eq.
�19�. On the contrary, Ref. �31� uses perfect-slip conditions,
corresponding to the reference value 
xz�0�=0 of the surface
stress,


xz�z� = − 

0

z

dz�fx, �36�

instead of Eq. �18�. Inserting the force field �12� one readily
finds the stress on the fluid beyond the boundary layer,

xz���=−�
2 /4��T��1+���xT, which confirms Eq. �15� of
�31�. The resulting expression for the Soret coefficient ex-
ceeds the present one by a factor a /�. On the other hand,
when evaluating the surface stress from Eq. �28� with the
no-slip boundary velocity vB, we find n ·� · t=−2�vB /a; in-
serting this in Eq. �6� of �31�, one recovers the above results
�32�–�34�.

Thus the conditions of zero tangential velocity �v̂x�0�
=0� and zero shear stress �
xz�0�=0� result in Soret coeffi-
cients that differ by a factor � /a. This means that a much
stronger Soret effect is expected for suspensions that satisfy
slip boundary conditions, thus illustrating the importance of
the properties of the particle-solvent interface. We note that
the data on AOT-water-oil microemulsions, SDS micelles,
and polystyrene nanoparticles �14,24,25� rather agree with
the present result ST	a based on no-slip conditions, whereas
those on micron-size polystyrene beads would match the law
ST	a2 that follows from slip �20,21�.

Available data suggest that significant slip may occur at
hydrophobic interfaces �40�, with slip lengths ranging from a
few nanometers to a micron. Perfect slip as assumed in �31�
occurs if the particle size is smaller than the slip length.

C. Previous theoretical work

Following Smoluchowski’s argument for electrophoresis
�38�, Ruckenstein suggested a size-independent phoretic ve-
locity u �22�, implying a Soret coefficient ST	�2a, which
was confirmed more recently by Refs. �26,27� and agrees
with our Eq. �35�. Regarding the prefactors, Refs. �22,27�
discuss only the dominant behavior and do not account for
the modified temperature gradient �13�. Our result confirms
that of Morozov �26� in the limit �→0 and for weak cou-
pling; we can make no statement concerning the negative
Soret coefficient derived in �26� for strong charges.

More recent work took the thermal force as the gradient
of the charging energy of the double layer �20,21,28–30�.
This assumption results in dependencies of the Soret coeffi-
cient, ST	�a2, that significantly differ from those given
above. In order to point out the main differences, we rewrite
Eq. �34� in terms of the charging energy EC= 1

2Q�0; with the
relation �0= �Q /4����� /a2� one has

ST =
1

T
�1 +

�

8
�1 + ��

�

a

Q�0

kBT
� . �37�

Comparison with, e.g., Eq. �44� of �30� in the limit of thin
boundary layers reveals that our expression is by a factor
� /a smaller than that obtained from the gradient of the
charging energy.

The ratio � of thermal conductivities of solute and solvent
is missing in most previous works. This factor � accounts for
the local distortion of the temperature field T�r�; e.g., for
example, if the particle is a good heat conductor, the tem-
perature in its vicinity is almost constant, and its gradient is
small. Depending on the thermal properties of solute and
solvent, the factor � may considerably reduce the Soret effect
�23�. Because of the high electronic heat conductivity, this
effect has been discussed in particular for suspensions of
metal particles �34�.

Finally we note that the present approach differs from
Derjaguin’s model �39� which is based on enthalpy transport
in a thermal gradient. This is most obvious when comparing
the boundary velocity in Eq. �20� to the expression given in
Chaps. 7 and 11 of �39� or in the review by Anderson �23�.

D. Experiments

Available experimental findings �14,20,21,24,25� diverge
with respect to the dependencies of the Soret coefficient on
Debye length � and particle size a. At present it is not clear
whether the measured Soret effect varies linearly or with the
square of the Debye length; see, e.g., the discussion in
�14,30�. When comparing these measurements with the
present or previous theoretical results, one should keep in
mind that discrepancies could arise from the weak-charge
assumption; it is by no means clear that the charged colloidal
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systems discussed above satisfy the condition of weak cou-
pling.

Regarding the dependence on the particle size a, very
recent studies on AOT-water-oil microemulsions �24� and
carboxyl functionalized polystyrene particles �25� show a
linear dependence on the particle size, ST	a, in the range of
a few nanometers up to several tens of nm. Thus these ex-
periments would agree with �22,27� and our Eq. �35� which
is based on hydrodynamics with no-slip boundary condi-
tions. On the other hand, a quadratic power law ST	a2 has
been reported for polystyrene particles, where the radius

ranges from a=20 nm to 1 micron, i.e., over almost two
orders of magnitude �20,21�. Such a behavior has been ob-
tained theoretically from the model based on the gradient of
the charging energy �20,21,28–30�, and from the boundary
layer approach with perfect slip conditions �31�.
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